

U.S. DEPARTMENT OF ENERGY DISTRIBUTED ENERGY

DISTRIBUTED ENERGY
PEER REVIEW

DECEMBER 13-15, 2005 . DOUBLETREE CRYSTAL CITY . ARLINGTON, VIRGINIA

Development of a Low-swirl Injector for Midsize Gas Turbines and Fuel Flexible Combustors

Robert K. Cheng & David Littlejohn Lawrence Berkeley National Lab. Waseem Nazeer & Ken O. Smith Solar Turbines Dec. 15, 2005

Project Overview

Goals/Objectives

 Adapt a nascent low-swirl combustion method to ultra-low emission fuel flexible MW size gas turbines

Timelines

- Feasibility studies (FY99-01)
- Proof-of-concept prototype demonstration (FY 02-03)
- Prototype development and demonstration for natural gas engines (FY 04-05)
- Further development for fuel-flexibility (FY 06-08)
- Budgets FY04 \$500K, FY05 \$350K
- Team/Partnerships
 - LBNL science and technology foundation
 - Solar Turbines engineering design and implementation

Motivation & Needs

- Technologies for ultra-low emissions gas turbines impacts system integration, compatibility, operation, durability, maintenance and cost
 - Catalytic combustors, surfaced stabilized injector, and active control methods are effective but questions remain on their engine readiness
- Circumvent these obstacles by developing an ultra-low emission combustion method that is readily adaptable to current engines
 - Exploit simple yet sophisticated low-swirl combustion for gas turbines

Low-swirl Combustion

- Low-swirl combustion (LSC) is a flame stabilization mechanism discovered at LBNL
 - Spin-off technology from DOE basic research
 - Requires new theoretical explanation
 - Technology transfer
 - 2 US patents
 - Basic knowledge applied to develop practical implementations and scaling and engineering rules
 - Maxon Corp. Commercialized LSC for direct industrial process heaters (two lines of products)
 - Meeting most stringent air-quality rules in US

LSC Has a Signature Lifted Flame

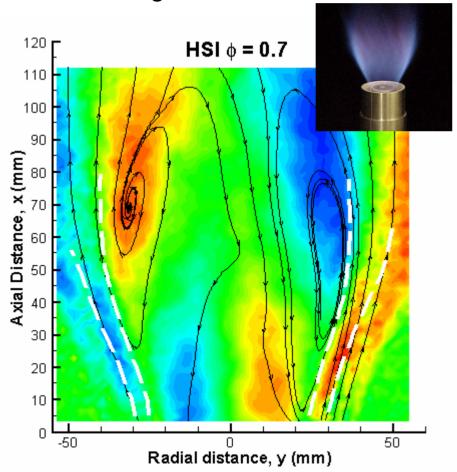
Burner made of PVC to showcase the uniqueness of the LSC concept

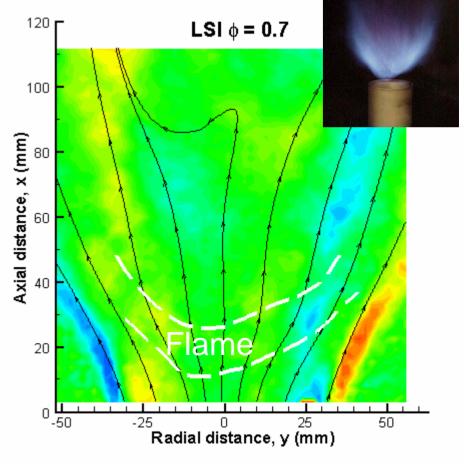
- Low-swirl combustion exploit the "propagating wave" property of premixed flames
 - Patented swirler optimized to generate a divergent flow where the flame can freely propagate
 - Flame position not highly sensitive to inflow velocity and mixture stoichiometry
 - Supports stable flame at ultralean ultra-low emissions conditions

Patented swirler for LSC

- Engineered to inhibit the formation of flow recirculation
- Derived a new definition of swirl number, S, to characterize swirl rate and for scaling

$$S = \frac{2}{3} \tan \alpha \frac{1 - R^3}{1 - R^2 + [m^2(1/R^2 - 1)^2]R^2}$$


- Center channel to injector radii ratio, $R = R_c/R_b$
- Vane angle, α
- Flow split between center channel and swirl annulus, m



LSC is flame stabilization without recirculation

 Conventional high-swirl injector generates backflow for flame anchoring

 Low-swirl injector generates flow divergence where the flame freely propagates

Adapting LSC to Gas Turbine

- Accomplishments FY99-03
 - FY99: verified LSC concept at turbine conditions using a low-swirl burner with air jets
 - FY00: demonstrated 3" industrial LSB at gas turbine conditions
 - FY01: established research & development plans for swirler design, premixer and staging
 - FY02: designed proof-of concept low-swirl injector (LSI) based on SoLoNOx swirler
 - FY03: demonstrated < 2 ppm NO_x at gas turbine conditions

FY04-05 Objectives

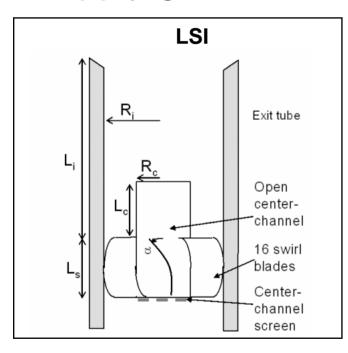
- Development of a fully functional LSI prototype
 - Confirm LSI operability within a typical engine cycle

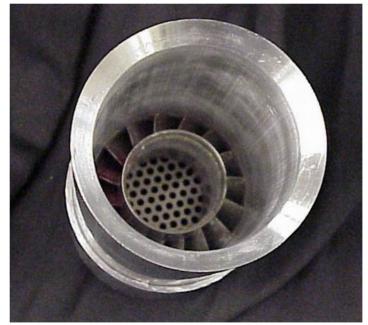
- Demonstrate engine readiness
 - Configure the LSI to be "Plug-in" injector replacement for SoLoNOx Taurus 70 (T70)

Barriers and Strategy

- Key technical barriers
 - Integration of a pilot and premixer to LSI
 - Interferences on LSC mechanism & emissions
 - Operability (light-off, on load & off load protocol, response to off-design conditions)
 - Injector to injector interactions
 - Combustion oscillations
- Strategy
 - A scientific approach guided by basic understanding of LSC principle and supported by laboratory studies and rig tests
 - Leveraging knowledge and insights from prior DLN developments

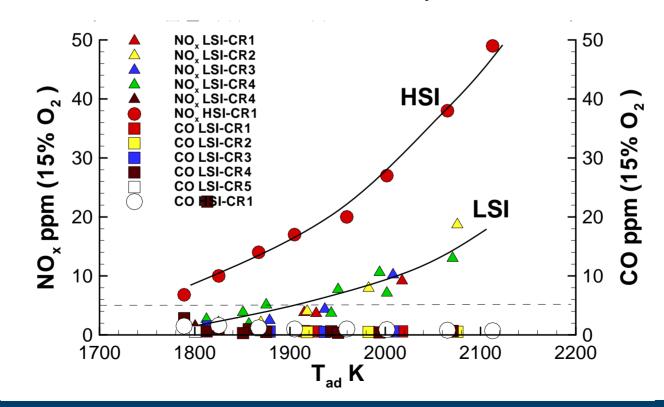
FY04-05 Milestones


- Developed fully functional LSI prototype
 - Optimized pilot placement and premixer design through laboratory experiments and rig tests
 - Designed, fabricated and tested an engine compatible LSI prototype
 - Single injector rig-tests verified stable operation within a wide window with NO_x < 3 ppm
- Tested a set of engine-ready LSIs in annular combustor liner
 - Met operability and ultra-low emission metrics
- Skipped costly developmental partial pressure rig tests and proceeding to T70 tests
 - Significant reduction in development cost
- Developed an empirical model for adaptation to fuel flexible turbines



LSI-1 Prototype from FY03 Works

- LSI built from SoLoNOx swirler
 - -Replace centerbody with perforated screen
 - -Apply guidelines from LSB development



Rig Tests Results of LSI-1

- Demonstrated low-swirl injector concept at full and partial loads (500 < T_{in} < 900F, (5 < P < 14 atm)
- NO_x emissions of LSI 60% lower then conventional DLN high-swirl injectors
- CO emissions well below acceptable limit

FY04-05 Tasks

- 1. Pilot integration
- 2. Premixer development
- 3. Engine compatible LSI
- 4. Laboratory studies

Pilot Integration

Needs

- Pilot flame is an essential component for light-off, load change, and off-design operating conditions
- Demonstrate that the LSI can operate within the T70 engine cycle

Challenges

- The pilot alters the flowfield produced by the LSI and can have a direct effect on the basic flame stabilization mechanism and emissions
- No convenient place to mount pilot due to absence of a centerbody in LSI

Developed Embedded Central Pilot

- Embedded central pilot gives the best performance among several different options
 - Particle image velocimetry (PIV) measurements and computational fluid dynamics (CFD) to optimize pilot tube size and assess effects on flowfield

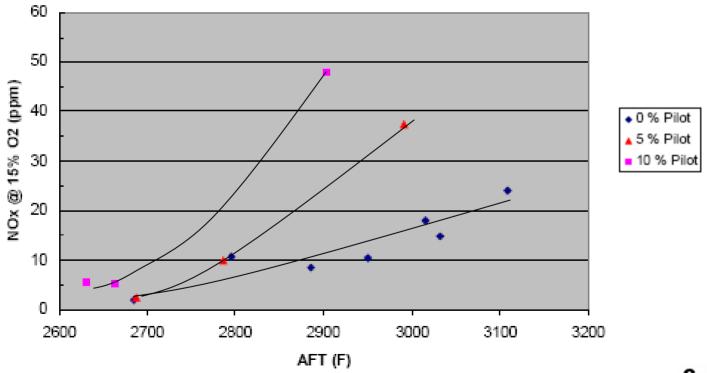
LSI-2 with embedded pilot

Premixer configuration

Needs

- Homogeneity of the main fuel/air premixture affects emissions and flame stability
- Opportunity
 - Prior rig-tests showed LSI tolerates some degree of in-homogeneity
 - Such leniency indicates that LSI affords a simple and compact premixer amenable to simple fabrication

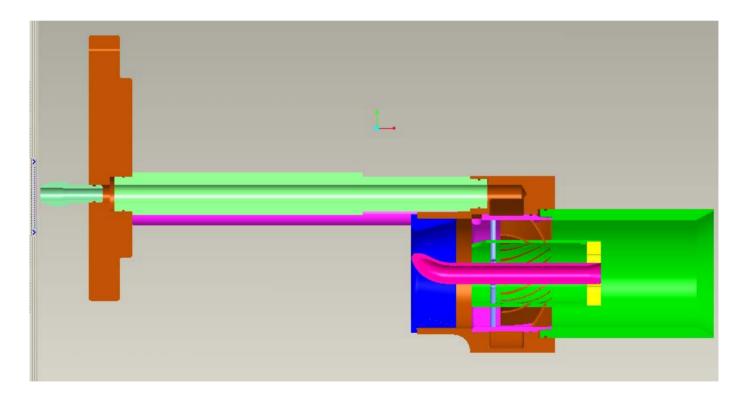
Configured simple multi-tube premixer


- Leverage on current SoLoNOx premixer design
 - Extend fuel tube to supply center channel
- Optimize to achieve desired homogeneity
 - Varied the number and locations of the injection ports
- Laboratory experiments at atmospheric conditions to verify functionality
 - Comparison of flowfields and flame positions with well mixed cases

Fully functional LSI-2 meets all metrics

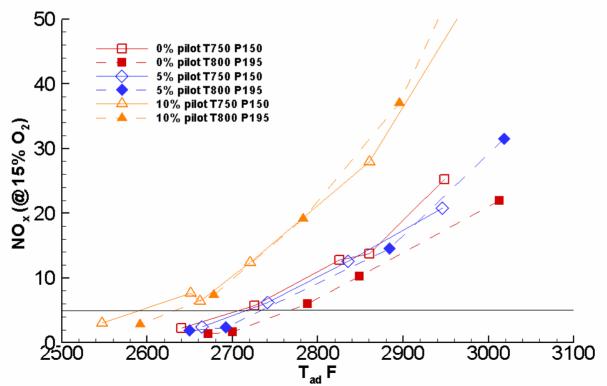
- High-pressure tests of LSI-2 with a pilot and premixer showed a wide stable operating window with pilot of 0 to 30%
- LSI-2 can stay lit at AFT of 1900 F with 30 % pilot

Engine compatible LSI-3


- LSI-3 built from SoLoNOx swirler
 - Significant savings in engineering and fabrication
- Same overall size and mounting configuration as T70 SoLoNOx injector
 - Ready for annular liner and engine tests
- Built 15 injectors
 - Selected two at random for baseline performance tests

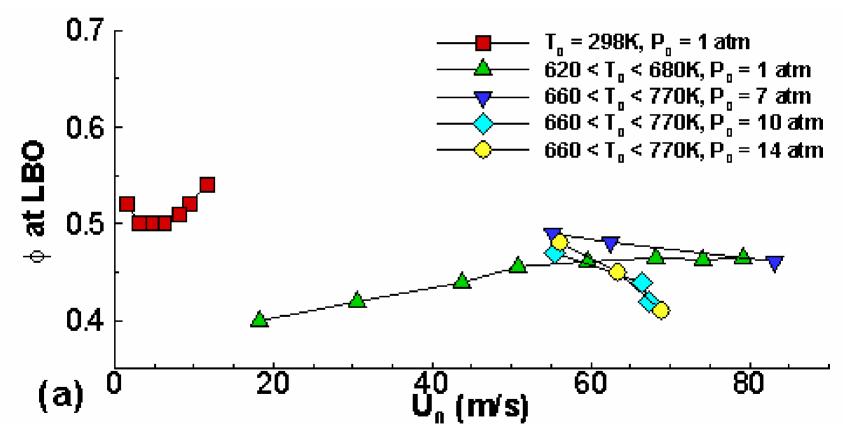
Engine Compatible LSI-3

- Less complex design than SoLoNOx
- Active tip cooling not necessary



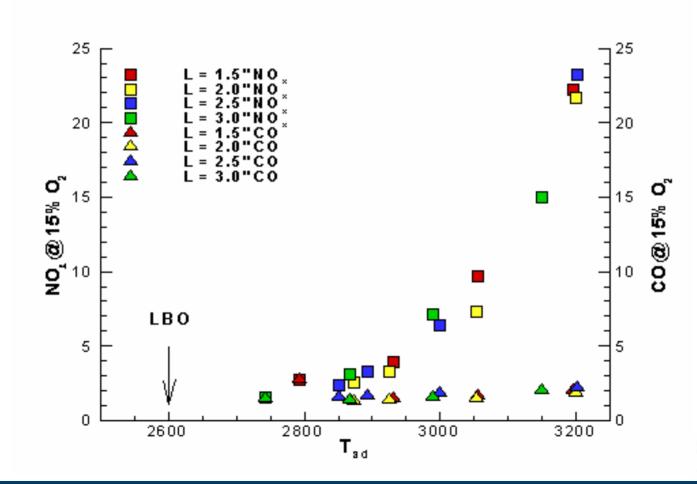
Baseline Performance of LSI-3

- 5% pilot offers ultra-low NO_x and extends LBO
- $NO_x < 2.5$ ppm at $T_{ad} < 2700$ F & < 5 ppm at $T_{ad} < 2750$ F
- CO well below acceptable levels
- 30% pilot extends LBO to T_{ad} = 2160 F at idling condition
- LSI-3 does not suffer from significant tip heating



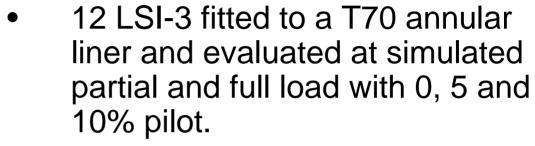
LBO determined at U₀ 60% above design point

LBO remains relatively insensitive to U₀



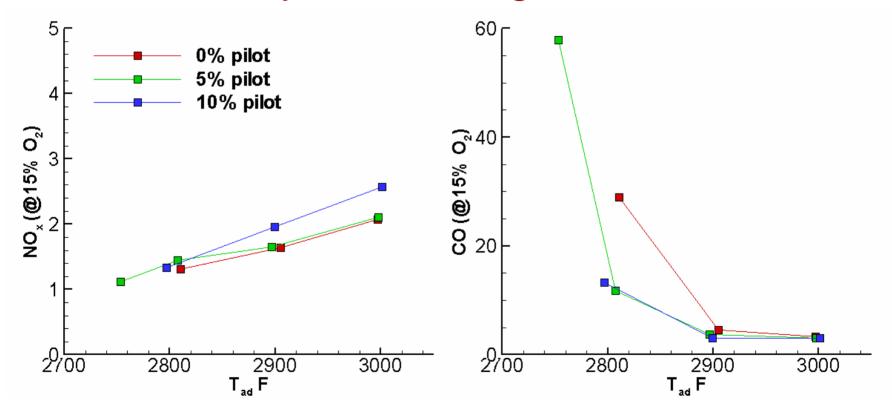
Emissions and LBO Independent of Barrel Length

- Varied barrel length from 1.5 to 3.0"
- Tested at $T_0 = 800 \text{ F}$, $P_0 = 14 \text{ atm } \& 3 \text{ lb/sec}$



Atmospheric Annular Liner Tests

 Circumferential and radial temperature distributions were within the acceptable limits


LSI-3 showed excellent lightaround characteristics with no indication of combustion harmonics or injector to injector interactions

LSI-3 Emissions in Annular Liner

- Trends similar to single injector tests
- LSI-3 ready for T70 engine tests

Impact

- Our research has produced a very cost effective ultra-low emissions injector that does not require sophisticated materials or chemicals nor alteration of the overall engine layout or the operation cycle
- Uniqueness in approach
 - Exploit combustion aerodynamics
 - Pursue engineering development guided by scientific background knowledge and supported by parallel laboratory studies

Meeting DE Program Goals

- Cost-effective R&D modest LSI project budget
- Lowering costs of DE LSI does not impact first, operating and maintenance costs
- Reducing emissions LSI is highly effective in reducing emissions to < 5 ppm NO_x
- Improving reliability and performance LSI does not compromise service life and has potential for efficiency enhancement
- Expand opportunities for DE equipment LSI provides an enabling technology for fuel-flexible turbines of all sizes

Future Work

Conduct T70 engine tests

• In house (Jan. 2006), Field test (TBD)

Commence Fuel Flexible LSI Development

- FY06

- Laboratory demonstration of fuel-flexible LSIs
- Designs of fuel-flexible LSIs dedicated to different ranges of Wobbe indices

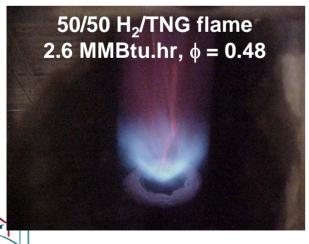
- FY07

- Laboratory demonstration of gas-liquid LSI
- Verify fuel-flexible LSI prototypes at industrial turbine and microturbine conditions
- Verify natural gas-liquid LSI at engine conditions

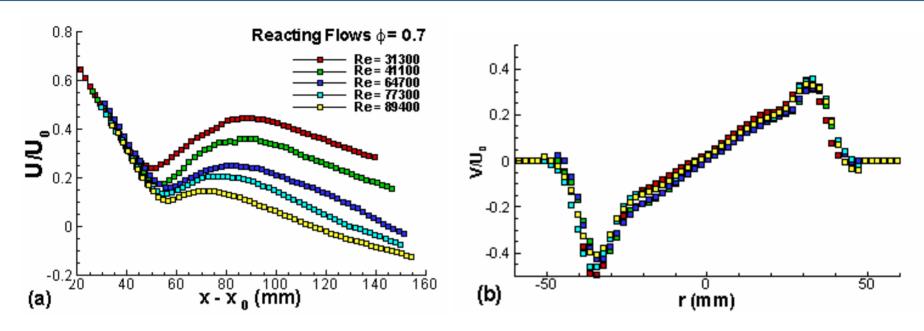
- FY08

- Engineering design guidelines for fuel-flexible LSIs
- Engine-ready fuel-flexible LSI prototypes for industrial turbines and microturbines
- Engine ready natural gas-liquid LSI prototype
- Identify efficiency, performance and DE generation enhancement options
 Solar Turbines

Laboratory Studies Leading to Fuel-Flexible LSI

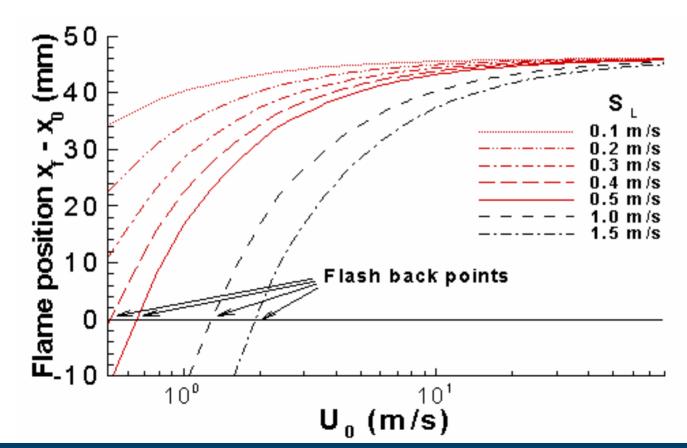

- Lean blow-off measurements for different fuels
- Variations in LSI configurations
 - Changing swirl number
 - Changing barrel tube lengths
- Firing with different fuels
- Further development of an empirical model through flowfield and emissions measurements

Firing with Alternate Fuels



- Liquid fuels
 - Laboratory demonstration of hexane premixed flame at STP
- Low heating value fuels
 - Performed laboratory experiments on a 50/50 CH₄/CO₂ fuel
- Refinery Gases
 - Demonstrated feasibility by firing different blends of natural gas, C₃H₈ and H₂

Investigated Flowfield Development


- Velocity measurements show flowfield similarity
- Defined two parameters to characterize the similarity features of the divergent flow

Empirical Model for Future Development

- Predicts LSI flame positions based on flame speed correlation and similarity parameters
- Explains why LSI flame positions remains invariant
- Basis for scaling LSI to accept other fuels

